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Abstract—We present a framework for solving simultaneously
the problems of Facility Location and Path Optimization in static
and dynamic spatial networks. In the static setting, the objective
is to determine facility locations and transportation paths from
each node to the destination via the network of facilities such that
the total cost of commodity transportation is minimized. This is
an NP-hard problem. We propose a novel stage-wise viewpoint of
the paths which is instrumental in designing the decision variable
space in our framework. We use Maximum Entropy Principle to
solve the resulting optimization problem. In the dynamic setting,
nodes and the destination are dynamic. We design an appropriate
control Lyapunov function to determine the time evolution of
facilities and paths such that the transportation cost at each
time instant is minimized. Our framework enables quantifying
attributes of the facilities and transportation links in terms of
the decision variables. Consequently, it becomes possible to in-
corporate application specific constraints on individual facilities,
links, and network topology. We demonstrate the efficacy of our
proposed framework through extensive simulations.

Index Terms—Facility Location, Shortest Path, Maximum
Entropy Principle, Spatial Network, Dynamic Programming.

I. INTRODUCTION

MANY complex systems are modelled as spatial graphs
where nodes are embedded into a metric space [1]–[5].

Areas such as supply chain networks [6], vehicle routing [7],
industrial process monitoring and power grids [8], battlefield
surveillance [9], disaster management [10], [11], small cell
network design in 5G networks [12], wireless networks [13],
[14] and last mile delivery [15] come under the purview
of spatial networks. Often in these areas a large number
of spatially scattered nodes need to transport a commodity
(such as information, raw or processed goods) to a given
destination (or central processing center). Cost and implemen-
tation considerations in these large networks result in nodes
that can transport only to nearby locations. This drawback is
addressed by overlaying a much smaller network of facilities
(special nodes) where each facility has resources to transport
commodities to other facilities even if they are far. These
facilities also have resources to collect commodities from the
nearby nodes. Thus a typical transportation path in such a
network would start at a node, go through the network of
facilities, and culminate at a destination node (see Fig. 1(a)).
Therefore designing of such a network requires placement
of facilities that cover all the nodes and determining the
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Fig. 1: (a) An agricultural supply chain which comprises of
several farm nodes ni which transport commodities to the pro-
cessing unit δ through a network of warehouses fj . Objective
is to determine warehouse locations {yj} and design relevant
transportation paths. (b) Battlefield Surveillance - comprises of
several nodes ni (with dynamics φi(t)) which communicates
with the satellite δ (with dynamics ψ(t)) through a network of
facilities fj . Objective is to find the dynamics of the facility
locations {uj(t)} and time-varying communication paths.

shortest transportation path from each node to the respective
destination center.

The problem in the context of overlaying the network of
facilities over the network of nodes can be described in terms
of the following two objectives - (a) find locations of facilities
that cover a large set of underlying nodes and (b) design the
shortest transportation path from each node, via the network
of facilities, to the destination center such that the total cost of
transportation is minimized. For instance, Fig. 1(a) illustrates
an agricultural supply chain where the farm nodes ni, located
at xi, need to transport produce to a food processing center
δ located at z through the network of warehouses {fj}. To
minimize the cost incurred in the supply chain, the warehouse
locations {yj} and the transportation path from each farm node
ni to the processing center δ needs to be determined. Since
all the nodes, destination center and the facilities are static in
this problem, we refer to it as simultaneous Facility Location
and Path Optimization in static spatial networks, abbreviated
as s-FLPO.

In many application areas, such as battlefield reconnaissance
and disaster management, the nodes and the destination center
have associated dynamics. For instance, Fig. 1(b) illustrates a
scenario of battlefield surveillance where each node ni, with
dynamics φi(t), investigates the domain Ω and communicates
the relevant information in real time to the satellite δ with
dynamics ψ(t). The communication is facilitated through a
network of UAVs (Unmanned Aerial Vehicles) {fj} and the
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objective is to minimize the total cost of communication at
each time instant. This task requires determining the appropri-
ate dynamics uj(t) of each UAV fj as well as the time-varying
optimal communication paths. We refer to this problem as
the simultaneous Facility Location and Path Optimization in
Dynamic spatial networks, abbreviated as d-FLPO.

The goal of the facility location problem in s-FLPO is
to allocate a set of facilities {yj} to data points {xi} such
that the cumulative distance between data points and their
nearest facility is minimized. This is an NP-hard problem
[16]. Other aspect of s-FLPO is the shortest path design
problem on a network graph G(V,E) which aims to find a
minimum cost path between any two vertices v1, v2 ∈ V . This
problem is solvable in polynomial order of vertices and edges
[17]. The additional objective of determining the shortest
path adds to the inherent complexity of the facility location
problem thereby resulting into a much more complex s-FLPO
problem where the cost functions are riddled with multiple
poor local minima. A straightforward method to solve the
s-FLPO problem would be to sequentially solve (a) facility
location, and (b) shortest path problems as done in [7] in the
context of Multi-depot vehicle routing. However, owing to the
fact that the two sub-problems are coupled, such a sequential
methodology results in a solution with a much larger cost
function value as demonstrated later in our simulations.

There is extensive literature that addresses the facility
location problem [18]–[24] and the shortest path problem
[25]–[27] individually. But there is scant literature that solves
the two problems simultaneously. Our previous work in [28]
and [29] are, to the best of our knowledge, the only efforts
along this direction in the context of spatial networks. How-
ever, the framework proposed in [28] does not scale with
the number of facilities M and the corresponding algorithm
becomes computationally intractable even for small values
of M(≥ 15). This is because the framework in [28] views
every permutation and combination of the M facilities as
a feasible transportation path and requires each such path
to be represented by a separate decision variable; resulting
into a combinatorially large O(

∑M
k=1

(
M
k

)
k!) decision variable

space. In addition to that, the decision variables in [28] fail to
provide any quantitative insight at the level of the individual
facilities {fj} and the transportation links {(fi, fj)} such as
the usage of a particular facility or a transportation link; due
to this the framework in [28] is not flexible to incorporating
application-specific capacity based constraints on the facilities
and network topology.

On the other hand the framework proposed in [29], though
scalable with decison variable space growing polynomially
O(M2), is applicable to only a restricted class of FLPO
problems where all the transportation paths assume a specific
structure. As a consequence of this structure, the framework
in [29] prohibits all such paths where two distinct facilities fj1
and fj2 establish a transportation link concurrently with the
same facility fj3 . The set of all feasible paths in [29] consists
of only a few ordered sequences of facilities where no facility
can lie in more than one sequence. Though, enforcing the
above path structure in [29] over [28] reduces the decision
variable space from combinatorially large O(

∑M
k=1

(
M
k

)
k!) to

polynomial size O(M2), it results into sub-optimal solutions
when used for the general class of FLPO problems that do not
necessitate the path structure assumed in [29]. We demonstrate
this via simulations in a later section.

In this work we develop a scalable framework for the
general class of s-FLPO problem to overcome the limitations
of [28] and [29]. We achieve this by (a) developing a novel
stage-wise viewpoint of the transportation paths (see Fig. 2)
and (b) exploiting the constraint resulting from the nature of
optimal transportation paths . More specifically, the stage-wise
viewpoint of the paths allows us to impose the structure on the
design of decision variables that results from the law of opti-
mality, that is, when any two optimal transportation paths in
the network intersect at a particular stage then the subsequent
route from the facility at that stage to the destination will be
same for both the paths. The stage-wise viewpoint is the main
mechanism that allows for substantial reduction in the size of
decision variable space from O(

∑M
k=1

(
M
k

)
k!) in [28] to the

order O(M3) in the current work without enforcing any path
structure as in [29].

One of the salient features resulting from our stage-wise
illustration of the transportation paths is that it provides
quantitative insights into several parameters of the s-FLPO
problem in terms of the underlying decision variables. For
instance, quantities such as the number of transportation paths
using a particular facility fj in a particular stage, fraction of
nodes connected directly to a given facility, and number of
paths that include a particular transportation link (fi, fj) at a
particular stage can be efficiently expressed in terms of the
stage-wise decision variables. Note that, once quantifiable in
terms of the decision variables it is easier to specify application
specific constraints on all such parameters. Additionally, we
demonstrate the flexibility of our proposed framework to
incorporate various such capacity constraints on facilities,
transportation paths and the network topology. We illustrate
this using networks where (a) the maximum length of the
transportation paths are restricted, (b) the network is partially
connected, and/or (c) the facilities and the transportation links
have maximum associated capacities. It must be noted that
incorporating these constraints cause no considerable changes
in the algorithm making their implementation straightforward.

In the context of d-FLPO problem, we show that the
relaxed cost function that appears in the solution framework
of the s-FLPO problem serves as a good candidate for a
control-Lyapunov function. We design a control law for the
dynamics {uj(t)} of the facilities which ensures that the
time-derivative of this Lyapunov function remains non-positive
at all times. The time-varying transportation paths are then
determined using the facility locations {yj(t)} at each time
instant. The important aspects of our control design that we
show are (a) the asymptotic tracking of the local minimum
to d-FLPO problem (Theorem 3), and (b) non-conservative
property (Theorem 4), i.e., if there exists a Lipschitz control
law that asymptotically tracks the local optimal of the d-FLPO
problem then the proposed control law is also Lipschitz and
bounded.

We present extensive simulations for the s-FLPO problem
in unconstrained and constrained scenarios to demonstrate
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the efficacy of our algorithm in terms of scalability, time-
complexity and the quality of solutions. Also a wide range of
constraints on the facilities, transportation path, and network
topology are demonstrated in our simulations. We demonstrate
the efficacy of our framework on a large scale system with
approximately N = 17000 nodes and allocate M = 50
facilities with the cost function values that are approximately
25% better than the solution obtained using [29]; note that
the framework in [28] results in (≈)1064 decision variables
for this scenario and hence the corresponding algorithm is
severely intractable.

We compare our simulations of the d-FLPO problem with
the frame-by-frame approach where we solve the s-FLPO
problem at each time instant to estimate the dynamics of the
facilities and transportation paths. We show the considerable
benefits of our proposed methodology obtained with respect to
algorithmic run times and practicality of the dynamics of the
facilities in comparison to the frame-by-frame approach. The
computational times are significantly reduced; as much as by
700 times have been demonstrated. Also, the simulations show
that the frame-by-frame approach requires some facilities to
undergo a considerable spatial change in a very small interval
of time thereby resulting into a non-viable dynamics which do
not occur when using our methodology.

II. THE s-FLPO PROBLEM

The s-FLPO problem is characterized by overlaying a
network of M facilities on a network of large number N �M
of nodes and designing a path (single or multi-hop) from each
node to the destination via the network of facilities. Let the
node ni be located at xi ∈ Rd, 1 ≤ i ≤ N and the destination
δ be located at z ∈ Rd. Let Γ0 = {n1, . . . , nN} denote the
set of all nodes. The two-fold objective of the optimization
problem is to (a) determine the location yj ∈ Rd of the
facilities fj , 1 ≤ j ≤ M and (b) design transportation paths
from each node ni to the destination δ via the network of
facilities such that the total cost of transportation (as quantified
later in this section) is minimized. A transportation path

ni → fr1 → fr2 → . . .→ frq → δ, (1)

where rj ∈ {1, . . . ,M}, from the node ni ∈ Γ0 to the desti-
nation δ is an ordered sequence of q (≤M) distinct facilities.
For such a path we say that the path length (or number of
hops) is q. In our framework we model a transportation path
γ from a node ni ∈ Γ0 to the destination δ as a sequence

γ = (γ1, . . . , γM ), (2)

where γk ∈ Γk ∀ 1 ≤ k ≤ M . Here the stage Γk is the
collection of all the facilities and the destination center, that
is, Γk = {f1, . . . , fM , δ} ∀ 1 ≤ k ≤ M (see Fig. 2). For
the transportation path in (1) γk = frk ∀ k ∈ {1, . . . , q} and
γk = δ ∀ k ∈ {q + 1, . . . ,M}, i.e. in our representation of
a transportation path we pad (1) with M − q many δ’s at the
end. We define ΓM+1 := {δ} as a singleton set comprising of
the destination center and G := {(γ1, . . . , γM ) : γk ∈ Γk∀1 ≤
k ≤M} as the set of all possible transportation paths. Please
refer to Fig. 2 for a pictorial illustration of a transportation

Fig. 2: Illustrates a transportation path γ from the node n1 ∈
Γ0 to the destination δ ∈ ΓM+1 via the stages {Γk}Mk=1.

path from n1 ∈ Γ0 to destination δ ∈ ΓM+1 via the stages
{Γk}Mk=1. The objective of the s-FLPO problem is to

min
{yj}

1≤j≤M

D0 :=
∑
γ0∈Γ0

[
ργ0

∑
γ∈G

ν(γ|γ0)d(γ0, γ)
]
, (3)

where ργ0 is a given relative weight of the node γ0 ∈ Γ0,

ν(γ|γ0) =

{
1, if γ = arg minγ′∈G d(γ0, γ

′)

0, otherwise
(4)

and d(γ0, γ) =
∑M
k=0 dk(γk, γk+1) is the cost incurred along

the path γ = (γ1, . . . , γM ) from the node γ0 to the desti-
nation δ. Here dk(·, ·) represents the cost of transportation
from the stage Γk to Γk+1. For notational simplicity we
denote dk(γk, γk+1) as dk wherever clear from the context.
The framework presented in this paper is applicable to any
general cost function dk(γk, γk+1); however, for the purpose
of illustration we assume it to be the squared euclidean
distance, i.e. dk(γk, γk+1) = ‖yrk−yrk+1

‖2, where γk = frk ,
γk+1 = frk+1

.

III. SOLUTION TO s-FLPO PROBLEM

A straightforward approach to solving the two-fold objective
optimization problem (3) is to solve for the two objectives
sequentially, that is, first allocate facilities to the nodes using
any of the facility location algorithms mentioned in Section
I and then find the shortest transportation path from each
node to the destination by solving the shortest path problem
on the resulting network graph [30]. However, this approach
disregards the fact that the two objectives are coupled and
therefore results in a suboptimal solution. Also, the algorithms
mentioned in Section I, which solve the facility location
problem, are substantially dependent on the initialization step.
For instance, in Lloyd’s algorithm (or k-means algorithm)
[23], [31] the initial step consists of randomly choosing
facility locations to form the initial facility locations. Since
the iterative scheme is such that only the ‘proximal’ input
points determine the facility location and not the ‘distant’ input
points, the k-means algorithm has a tendency to get trapped
in the local minima.

The algorithm that we propose in this work is motivated
from the Deterministic Annealing algorithm for facility lo-
cation problem [22]. In particular, the proposed algorithm
overcomes the local influence of the nodes on the solution
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to s-FLPO problem by associating each node γ0 with all the
transportation paths through a weighting parameter p(γ|γ0).
Without loss of generality, we assume that

∑
γ∈G p(γ|γ0) = 1

∀ γ0 ∈ Γ0 and the proposed algorithm seeks to minimize the
relaxed version of the cost function in (3) given by

D =
∑
γ0∈S

ργ0
∑
γ∈G

p(γ|γ0)d(γ0, γ). (5)

It must be noted that the choice of association weights
p(γ|γ0) determines the trade-off between the local influence
(or the initialization of the algorithm) and deviation from
the original cost function (3), i.e. if the association weights
are uniformly distributed p(γ|γ0) = 1/|G|, then the two
cost functions differ largely from each other, however the
minimization of the objective function (5) is independent of
the initialization of the algorithm as all possible paths from the
nodes γ0 are given equal weights. For the choice of association
weights p(γ|γ0) = ν(γ|γ0) the relaxed cost function (5)
reduces back to the original cost function (3).

It follows from the law of optimality that along an optimal
transportation path, the upcoming facility on the path is
decided solely by the current facility and is independent of
the prior facilities on that path. We impose this structure on
our choice of the association weights p(γ|γ0), which translates
to a Markov property. Thus the association weight p(γ|γ0),
which relates an entire transportation path γ = (γ1, . . . , γM )
to the node γ0, can be broken down into association weights
{pk(γk+1|γk)}Mk=1 where pk(γk+1|γk) relates the stage Γk to
Γk+1. More specifically,

p(γ|γ0) =
M∏
k=0

pk(γk+1|γk). (6)

For notational simplicity, we denote pk(γk+1|γk) as pk when-
ever it is clear from the context. The association weights
pk(γk+1|γk) ∀ 0 ≤ k ≤ M − 1 along with the spatial
coordinates {yj}, 1 ≤ j ≤ M of the facilities comprises of
the decision variable space of our optimization problem. The
relaxed cost function in (5) is now rewritten as

D =
∑
γ0∈Γ0

ργ0
∑
γ∈G

M∏
k=0

pkd(γ0, γ). (7)

Observe that the decision variable p(γ|γ0) in (5) is replaced
by the decision variable pk(γk+1|γk) in (7), thereby making
our optimization problem across all possible paths γ to an
optimization problem across consecutive stages Γk and Γk+1,
1 ≤ k ≤M . This results into the reduction of decison variable
space from O(

∑M
k=1

(
M
k

)
k!) to O(M3).

We use the Maximum Entropy Principle (MEP) [32], [33] to
design the association weights pk(γk+1|γk) such that the cost
function (7) attains a specified value. More specifically, MEP
determines the association weights by solving the following
associated optimization problem

max
{pk}

H := −
∑
γ0∈S

ργ0
∑
γ∈G

(M−1∏
k=0

pk

)
log
(M−1∏
k=0

pk

)
, (8)

s.t. D = c0 (9)

where c0 is a given value of the cost function. This prob-
lem is solved repeatedly at decreasing values of c0, which
is described later in Section III. As the entropy term (8)
quantifies for the level of randomness, maximizing it at a
fixed value c0 of the cost function (7) results into association
weights pk(γk+1|γk) that ensures maximum uncertainty or
uncommitted nature of the algorithm towards any particular
solution. The Lagrangian corresponding to the optimization
problem in (8)-(9) is given by

F̄ = (D − c0)− 1

β
H, (10)

where 1/β is the Lagrange multiplier. The Lagrangian F̄ is
convex in pk ∀ k and we determine the association weights
by setting ∂F̄

∂pk
= 0 which yields

pk =
(
e−βdk

)
∑

(σk+2,...,σM ):
σk+1=γk+1

e−β
∑M
t=k+1 dt(σt,σt+1)

∑
(σk+1,...,σM ):

σk=γk

e−β
∑M
t=k dt(σt,σt+1)

. (11)

In the expression of the unconstrained lagrangian (10) we
refer to the lagrange parameter 1

β as the temperature and
F̄ as the Free energy because of their close analogies to
statistical physics (where Free energy is enthalpy (D) minus
the temperature times entropy (TH)). Substituting (11) into the
expression of free energy F̄ in (10) we obtain

F = − 1

β

∑
γ0∈Γ0

ργ0 log
∑
γ∈G

e−β
∑M
t=0 dt(γt,γt+1). (12)

Note that for brevity we ignore the constant term c0 in
the above expression of F . As illustrated later the Lagrange
parameter β implicitly decides the value of c0. Additionally,
the above F can be viewed as a relaxation of the cost
function D in (7). In fact, as β → ∞ we observe that
F → D. We now minimize (locally) F in (12) with respect
to y = [yT1 , . . . , y

T
M ]T to obtain the spatial coordinates of the

facilities, i.e. we put ∂F
∂y = 0 to obtain

y = (2Â− B̂)−1( ˆ̄X + Ĉ). (13)

where Â = Id ⊗ A, B̂ = Id ⊗ B, ˆ̄X = Id ⊗ X̄ , Ĉ = Id ⊗ C
and Id is an identity matrix of d× d dimension. The matrices
A,B ∈ RM×M , X̄, C ∈ RM×d depend on the association
weights pk(γk+1γk), the spatial coordinates of the nodes {xi}
and the destination location z. Please refer to the Appendix
A for the definitions of the above matrices and the proof that
the matrix (2Â− B̂) is positive definite (i.e., invertible).

The constraint value c0 in (9) decides the temperature
variable T = 1/β. It follows from the sensitivity analysis [34]
that lower value of c0 corresponds to the higher value of β. It
is clear from (10) that for small values of β (i.e. high values
of c0), we are mainly minimizing the convex function −H ,
which results into uniformly distributed association weights.
As β increases (c0 decreases), more and more weightage in
(10) is given to the cost function D i.e. F closely approximates
the non-convex cost function D. In the limit β → ∞ we
have that F = D and we obtain hard association weights
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pk(γk+1|γk) ∈ {0, 1}. The idea is essentially to find the
global minimum of the convex function −H and then track
the minimum of F at successively increasing values of β,
until F → D. This is done in our algorithm via iterating
between (13) and (11) at successively increasing value of β,
and using the solution from each β iteration as an initialization
for the next β iteration. The resulting annealing algorithm is
as follows.

Algorithm 1 main(X , z, βmin, βmax)

1) Initialize β to the small value βmin.
2) Calculate the association weights {pk(γk+1|γk)} in (11).
3) Calculate the facility locations y in (13).
4) Iterate between step 2 and 3 until convergence.
5) Increase β by a factor κ > 1; i.e. β ← κβ.
6) Stop if β ≥ βmax. Else go to step 2.

Theorem 1. The iterations in step 4 of the Algorithm 1
are equivalent to iterations of a descent method to solve the
implicit equation (13). Consequently Algorithm 1 converges.

Please refer to the Appendix B for the proof.

IV. PHASE TRANSITION PHENOMENON

The above algorithm upon implementation exhibits phase
transitions very similar to that seen when Deterministic An-
nealing (DA) [22] is applied to pure facility location problems.
In the initial iterations of the algorithm when β is very small
the cost function is dominated by −H; minimizing this gives
uniform distributions for the association weights pk(γk+1|γk).
Also with this uniform distribution of the association weights
all the facilities get allocated at the same spatial coordinates
given by (13) and all the corresponding transportation path
are same. Now as β is increased, the simulations show that
there is no perceptible change on the facility locations till
a critical value of β = βcr1 is reached; beyond which the
number of distinct facility locations and the number of distinct
transportation paths increases. Again as β is increased further,
there is no change in the facility location and transportation
paths till the next critical value of β = βcr2 is reached, where
the number of distinct facility locations and transportation
paths increases again. These phase transitions are of interest
as they can help control the number of distinct facilities that
one may want to allocate to the network of nodes and also
help in speeding up the annealing process.

The critical values of β (βcr1, βcr2, . . .) are obtained by
tracking the conditions for attaining the minimum of free-
energy F . At β = 0, the free-energy function is convex,
and setting ∂F

∂y = 0 gives the global minimum, also the
hessian ∂2F

∂y2 is positive definite. As β increases, at a particular
β = βcr1, ∂F∂y = 0 and the Hessian loses rank. Here bifurcation
occurs leading to an increase in the number of distinct facility
locations. Using variational calculus, the necessary condition

for y to be a minimum of F requires that for all choices of
finite perturbation ψ

∂Fε
∂ε

∣∣∣
ε=0

= 0, and (14)

∂2Fε
∂ε2

∣∣∣
ε=0

=
∑
γ∈G

p(γ)ΛTγ

(
I− 2βΥγ)

)
Λγ

+ 2β
∑
γ0∈Γ0

ργ0

[∑
γ∈G

p(γ|γ0)KT
γ Λγ

]2
> 0, (15)

where Fε = F (y + εψ), p(γ) =
∑
γ0
ρ(γ0)p(γ|γ0), Υγ =∑

γ0
p(γ0|γ)KγK

T
γ and Λγ ,Kγ are as defined in the Ap-

pendix C. We characterize phase transition as below.

Theorem 2. The critical value of β at which the hessian (15)
is no longer positive definite, i.e, it loses rank is given by
βcr = maxγ

(
2λmax(Υγ)

)−1
where λmax(Υγ) is the largest

eigenvalue of the matrix Υγ :=
∑
γ0
p(γ0|γ)KγK

T
γ .

See appendix C for proof.

V. ADDING MULTIPLE CAPABILITIES AND CONSTRAINTS
TO THE PROBLEM

In various applications involving spatial networks the
overall design goal includes efficient utilization of facilities
and the transportation paths. This often corresponds to
incorporating several application based constraints on
the network topology or on the facilities. In this section
we elucidate the flexibility of our proposed approach in
incorporating such constraints.

A. Restricted Number of Hops: In certain applications it is
be beneficial to restrict the path length q of the shortest
transportation path as any extra-hop for the commodity may
involve associated penalties and overheads such as processing
energy cost and time delays. Let Lγ0 be the given maxi-
mum allowable path length (or the number of hops) for a
commodity originating at a node γ0 ∈ Γ0. Therefore all the
transportation paths γ ∈ G with path length greater than Lγ0
become invalid for γ0. This constraint enforces that on an
optimal transportation path the facility γk+1 depends on the
facility γk as well as the originating node γ0 which results
into the dissociation of the association weight p(γ|γ0) as
p(γ|γ0) =

∏M
k=0 pk(γk+1|γk, γ0). For notational simplicity

we denote pk(γk+1|γk, γ0) by pk,γ0 whenever it is clear from
the context. Using the Maximum Entropy Principle we obtain
the association weights pk,γ0 as the Gibbs distribution

pk,γ0 =
(
e−βdk

)
∑

σk+2,...,σLγ0
σk+1=γk+1

e−β
∑Lγ0
t=k+1 dt(σt,σt+1)

∑
σk+1,...,σLγ0

σk=γk

e−β
∑Lγ0
t=k dt(σt,σt+1)

, (16)

where σl ∈ Γl ∀ l ∈ {k+1, . . . , Lγ0}, which when substituted
into the expression of F̄ in (10) results into

F1 = − 1

β

∑
γ0

ργ0 log
∑

γ1,...,γLγ0

e−β
∑Lγ0
t=0 dt(γt,γt+1). (17)
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Minimizing (locally) F1 in (17) by setting ∂F1

∂y = 0, we
obtain the facility locations y.

B. Structured (Partially Connected) Network: A transporta-
tion link (fi, fj) exists (or is active) if a commodity
packet is permitted to hop between the facilities fi and fj .

Fig. 3: A fully-connected
and a partially connected
network.

In a partially connected spa-
tial network, some of the trans-
portation links are absent ow-
ing to which the correspond-
ing facility pairs are unable
to send across commodities.
Fig. 3 demonstrates a fully
connected and a partially con-
nected network topology. To
incorporate the partial connec-
tivity of the network as a con-
straint in the optimization prob-
lem (3) we introduce a connectivity parameter ωfi,fj defined
as

ωfi,fj =

{
1 if transportation link (fi, fj) exists
0 otherwise

.

We incorporate the connectivity parameter ωfj ,fk into the
expression of the association weights pk(γk+1|γk) (11) in such
a manner which (a) assigns pk(fj |fi) = 0 ∀ k for the non-
existent link (fi, fj) (b) rules out all transportation paths that
consist of the non-existent link from the solution space thus
leading to the following expression of the association weights

pk = ωγk,γk+1
e−βdk

∑
σk+2,...,σM
σk+1=γk+1

M∏
t=k+1

ωσtσt+1
e−βdt

∑
σk+1,...,σM
σk=γk

M∏
t=k

ωσtσt+1e
−βdt

. (18)

We substitute the above association weights into the
expression of free energy F̄ in (10) to obtain F2, which is
then minimized (locally) by setting ∂F2

∂y = 0 to obtain the
facility locations y.

C. Capacity constraint on facilities and path links: In cer-
tain applications the capacity and cost constraints on the
facilities result into corresponding constraints on its usage
by transportation paths. For instance, the warehouses fj in
Fig. 1(a) may have limited storage capacity for agricultural
goods collected from the farms. The decision variables in our
framework appropriately quantify the usage C(fj) of each
facility fj as

C(fj) =
∑
γ0

ργ0p0(fj |n0) +
∑
γ0,γ1

ργ0p0(γ1|γ0)p1(fj |γ1)

+ . . .+
∑

γ0,...,γM−1

ργ0p0(γ1|γ0) . . . pM−1(fj |γM−1), (19)

where the first term in the above expression indicates the
effective number of transportation paths passing over fj in
the stage Γ1, second term indicates the effective number of

paths passing over fj in the stage Γ2, so on and so forth till
the last term which indicates the effective number of paths
passing over fj in the last stage ΓM . We address the facility
capacity constraint by requiring the usage of the facility fj to
be given by C(fj) = wj where wj denotes the pre-defined
capacity of the j-th facility. The corresponding unconstrained
Lagrangian is given by

F̄3 = F̄ +
M∑
j=1

αfj
(
C(fj)− wj

)
, (20)

where F̄ is given in (10). Minimizing F̄3 with respect to the
association weights {pk(γk+1|γk)} we obtain

pk = e
−β(dk+αγk+1

)

∑
(γk+2,...,γM )

e
∑M
t=k+1 −β(dt+αγt+1

)

∑
(γk+1,...,γM )

e
∑M
t=k −β(dt+αγt+1

)
, (21)

where αγk is a Lagrange multiplier in (20). We refer to ζγk :=
e−βαγk∀γk ∈ Γk\{δ} as the weight parameter. Substituting
(21) in (20) to obtain F3 and minimizing (locally) F3 with
respect to y gives the expression for facility locations y. To
obtain the parameters ζfj we substitute the association weights
(21) in the expression (19) of C(fj) and equate the subsequent
expression to wj (i.e. set C(fj) = wj). This results in the
update equation

ζp+1
fj

= ζpfj
wj

C(fj)
,∀j ∈ {1, 2, . . . ,M}. (22)

In our algorithm we minimize the free-energy F̄3 at suc-
cessively increasing values of β by alternating between the
expressions of association weights in (21), facility locations y
and the update equation for ζfj in (22).

Similarly, in certain application areas the amount of traffic
ηfifj that a transportation link (fi, fj) is able to handle is
known apriori. Using the decision variables in our framework
we appropriately quantify the usage Cfifj of each transporta-
tion link from fi to fj as

Cfifj = p1(fj |fi)
∑
γ0

ργ0p0(fi|γ0)

+ p2(fj |fi)
∑
γ0,γ1

ργ0p0(γ1|γ0)p1(fi|γ1) + . . .

+ pM−1(fj |fi)
∑

γ0,...,γM−2

ργ0p0(γ1|γ0) · · · pM−2(fi|γM−2), (23)

where the first term in the above expression is the fraction of
total paths with node fi ∈ Γ1 and fj ∈ Γ2, i.e. the fraction
of paths with (fi, fj) transportation link occurring in the hop
from stage Γ1 to stage Γ2. Similarly the other subsequent terms
count the fraction of the transportation paths with (fi, fj) link
in the hop from stage Γk to Γk+1 for all k ∈ {2, . . . ,M −1}.
The unconstrained Lagrangian in this case is given by

F̄4 = F̄ +
∑
i,j:i6=j

αfifj
(
Cfifj − ηfifj

)
, (24)
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where F̄ is given by (10). The association weights
{pk(γk+1|γk)} that minimize F̄4 are given by

pk = e
−β(dk+αγkγk+1

)

∑
(γk+2,...,γM )

e
∑M
t=k+1 −β(dt+αγt,γt+1

)

∑
(γk+1,...,γM )

e
∑M
t=k

−β(dt+αγt,γt+1
)
, (25)

where λγkγk+1
:= e−βαγkγk+1∀γk, γk+1 is referred to as the

weight parameter. Substituting (25) in the expression of free-
energy F̄4 (24) to obtain F4 and setting ∂F4

∂y = 0 gives
the facility locations y. To obtain the parameters λfifj we
substitute the association weights (25) in the expression (23)
of Cfifj and equate the subsequent expression to ηfifj (i.e.
set Cfifj = ηfifj ). This results in the update equation

λp+1
fifj

= λpfifj
ηfifj
Cfifj

. (26)

As before, our algorithm minimizes free-energy F̄4 at suc-
cessively increasing values of β by alternating between the
expressions of the association weights (25), facility locations
y and the update equation for λfifj in (26).

VI. EXTENSION TO DYNAMIC SPATIAL NETWORKS

In the case of dynamic spatial networks, the nodes and
the destination center have an associated dynamics given by
continuously differentiable velocity fields φi(xi(t), t) ∈ Rd,
1 ≤ i ≤ N and ψ(z(t), t) ∈ Rd respectively. The resulting
facility locations and the transportation paths are also time
varying and the entire dynamical system is represented as

ζ̇ = f(ζ(t), t)⇐⇒


ẋ(t) = Φ(x(t), t)

ż(t) = Ψ(z(t), t)

ẏ(t) = u(x(t), z(t), y(t), t)

, (27)

where x(t) = [xT1 (t), . . . , xTN (t)]T ∈ RNd, Φ =
[φT1 (t), . . . , φTN (t)]T ∈ RNd, u(t) = [uT1 (t), . . . , uTM (t)]T ∈
RMd, and ζ(t) = [x(t)T , z(t)T , y(t)T ]T ∈ R(N+1+M)d.

Similar to the static spatial networks, the problem of simul-
taneous Facility Location and Path Optimization in Dynamic
spatial networks (d-FLPO) has two fold objectives, (a) allocate
facilities yj(t), 1 ≤ j ≤ M in the domain Ω and (b)
design optimal transportation path from each node ni to
the destination center δ such that the cost function (3) gets
minimized at every time instant t.

A straightforward approach to solve the d-FLPO problem is
to solve the s-FLPO problem at every time instant to determine
the facility locations and the transportation paths. However, it
is quite evident that such a methodology is computationally
expensive. A specific shortcoming of this method is that it
does not employ the past knowledge of facility locations and
transportation routes to determine the solution at current time
instant, which may potentially lead to big changes (jumps) in
facility locations over a very small time intervals; and may
not be practically achievable as shown in Section VII.

We propose a control-based framework to solve the d-FLPO
problem that builds upon the solution of the s-FLPO problem
obtained at the initial time instant t0. In our framework, we
use the free-energy function F (12) as a Lyapunov candidate

function for the dynamical system (27) and design the control
for facility dynamics ẏ(t) = u(t) such that Ḟ ≤ 0 ∀ t ≥ 0.
Note that F is a smooth approximation of D in (7) which
incorporates cost functions for both facility location and path
optimization problems. Once the dynamics of the facilities are
known, the time-varying transportation paths can be deduced
from (11). The following theorem justifies the choice of free-
energy F as a Lyapunov function.

Theorem 3. Let F be the free-energy function (12) corre-
sponding to the dynamical system (27) then
a) F (ζ) + 1

β log |G| > 0, ∀ ζ = [xT , yT , dT ]T ∈ R(N+M+1)d

where G = {(γ1, . . . , γM ) : γk ∈ Γk∀1 ≤ k ≤ M} is the set
of all possible paths when M facilities are allocated.
b) The derivative

∂F

∂ζ
=

 P̂γ0 −P̂ 0(γ1, γ0) 0

−P̂ 0(γ1, γ0)T 2Â− B̂ −Ĉ
0 −ĈT I

 , (28)

is a symmetric matrix, where P̂γ0 = Id ⊗ Pγ0 , Pγ0 =
diag({ργ0}), P̂0(γ1, γ0) = Id ⊗ P0(γ1, γ0), P0(γ1, γ0) =
[pγ0p0(γ1|γ0)] and Id is an identity matrix of size d× d. Also
note that Ḟ (t) = 2ζT ∂F∂ζ ζ̇.
c) There is no dynamic control authority at the facility lo-
cations yc(t) = (2Â − B̂)−1(X̂ + Ĉ) obtained in (13), i.e.
∂Ḟ
∂u = 0 at y(t) = yc(t).

Please refer the Appendix D for proof of the above theo-
rem. The facilities are at the positions yc(t) (13) only when
ȳ(t) := y(t) − yc(t) = 0. We transform the coordinates
ζ = [xT , yT , zT ]T to ζ̄ = [xT , ȳT , zT ]T , where ȳ = y − yc.
In the new coordinates, the dynamics of the facility locations
are given by

˙̄y(t) = ū(t)− (2Â− B̂)−1
[
(2

˙̂
A− ˙̂

B)yc

+
˙̂
P 0(γ1, γ0)Tx+

˙̂
Cz
]
, (29)

where ū = u− (2Â− B̂)−1(P̂ 0(γ1|γ0)TΦ + ĈΨ) and

Ḟ = (xT P̂γ0−yTc P̂0(γ1|γ0)T )Φ

+ [zT − yTc Ĉ]ψ + ȳT (2Â− B̂)ū(t). (30)

We take advantage of the affine dependence of Ḟ on ū(t)
in (30) to determine the choice of ū(t) such that Ḟ ≤ 0 [35],
[36], [37]. More particularly, we choose control

ū(ζ̄) = −

[
K0 +

α+

√
|α|2 + (ȳ(2Â− B̂)ȳ)2

ȳT (2Â− B̂)ȳ

]
ȳ (31)

where ȳ 6= 0, K0 > 0 and α = (xT P̂γ0 − yTc P̂0(γ1|γ0)T )Φ +
[zT − yTc Ĉ]ψ. The following two theorems establish that the
facility locations y(t) converge asymptotically to yc(t) and the
control effort (31) is bounded near ȳ = 0.

Theorem 4. Asymptotic convergence: For the dynamical sys-
tem (27) the choice of control ū(ζ̄) in (31) results in Ḟ ≤ 0
∀ t ≥ 0 and ȳ(t)→ 0 as t→∞.

Theorem 5. Lipschitz continuity: If there exists a control ˆ̄u :
R(N+M+1)d → RMd Lipschitz at ζ̄ = 0 such that Ḟ ≤ 0
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∀ t ≥ 0 for ū = ˆ̄u, then the choice of control ū in (31) is
Lipschitz at ζ̄ = 0. That is, ∃ ε > 0 and a constant c0 such
that ‖ū(ζ̄)‖ ≤ co‖ζ̄‖ for ‖ζ̄‖ ≤ ε

Please refer to the Appendix D for the proof of the above two
theorems. Remarks: (i) The above control design methodology
can be extended to the d-FLPO problems with additional con-
straints over the network topology and facilities. In fact, our
simulations in Section VII demonstrate the d-FLPO problem
where the spatial network is partially connected. (ii) Theorem
5 emphasizes the non-conversativeness of our solution; i.e., if
there exists a Lipschitz (bounded) solution such that Ḟ ≤ 0
then Theorem 5 implies that our proposed solution is also
Lipschitz (bounded). (iii) For the purpose of simulation, we
discretize time into ∆t intervals. At instants ȳ 6= 0 we
determine the dynamics of y(t) using ū in (31). This results
into Ḟ ≤ 0 at all such time instants. For the time instants when
ȳ = 0 we already have the facilities at the locations yc. At
such instants Ḟ may be positive, negative or zero depending
on the dynamics of the node and the destination center.

VII. SIMULATION AND RESULTS

In this section we simulate our proposed algorithms for
the s-FLPO and d-FLPO problems. We first illustrate the s-
FLPO problem. For the purpose of simulations we randomly
distribute 200 nodes around 6 randomly chosen points in
an 11 × 8 square unit area. The location of the destination
(marked as δ) is randomly chosen to be at (4, 7). For the
purpose of illustration we assume the cost function dk(·, ·) to
be squared-euclidean distance. Consider the scenario where
we allocate M = 5 facilities. As stated in section IV, at
low value of β, all the facilities {fj}5j=1 get allocated at the
same spatial coordinates as shown in the Fig. 4(a), where
the triangles denotes the nodes, circle denotes the facilities
and the diamond denotes the destination. As the value of β
increases the number of distinct facility locations increases
(Fig. 4(b)), and the final facility locations and transportation
paths are obtained as β becomes sufficiently large as shown
in the Fig. 4(c). In the Fig. 4(c), a node of a particular color
first sends its commodity packet to the facility of the similar
color which then reaches the destination center via the path
indicated in the figure. Observe that in Fig. 4(c) all the nodes
γ0 either opt for the 4-hop path f4 → f5 → f1 → f3 → δ
or the 3-hop path f2 → f1 → f3 → δ. The total cost of
transportation incurred is 12.58 units. Fig. 4(d) illustrates the
solution to the same problem using the sequential approach
illustrated in the Section III which incurs a total transportation
cost of 34.16 units, 2.7 times the cost incurred in Fig. 4(c).
This demonstrates that the sequential approach results into
a solution with a much higher cost as compared to the
simultaneous approach.

Restricted Number of Hops: Fig. 4(e) illustrates the solution
to the s-FLPO problem when the maximum path length is
restricted to 3 for all the nodes, i.e. Lγ0 = 3 ∀ γ0 ∈ Γ0.
Observe that now all the nodes opt for either f4 → f2 →
f1 → δ or f5 → f3 → f1 → δ paths, both of which have path
length of 3. The total cost in this case is 12.71 units, which is
approximately 1% higher than the scenario in Fig. 4(c) where

there is no restriction on the maximum path length. We can
deduce the effectiveness of restricting hops to 3 which only
leads to about 1% cost increase; that is marginal utility of
adding more hops is only about 1%.

Partially Connected Network: Fig. 4(f) simulates a partially
connected spatial network. For the purpose of simulation, we
assume that the transportation links (f1, f2), (f2, f3), (f4, f1)
, (f1, f3), (f4, f5) and (f5, f3) are absent. As shown in the
Figure, the algorithm respects the constraint posed by the
partially connected network and assigns the facility locations
and paths correspondingly. The total cost of transportation is
12.92 units. Note the difference with the facility location and
transportation path assignments in a fully-connected network
Fig. 4(c).

Capacity Constraints: Fig. 4(g) demonstrates the capacity
constraints on various facilities. Here facility capacities are
distributed as w1 : w2 : w3 : w4 : w5 = 4 : 2 : 2 : 1 : 1.
In the figure, the final facility allocation and path design is in
such a way that C(f1) : C(f2) : C(f3) : C(f4) : C(f5) =
3.85 : 1.75 : 2.10 : 1 : 1.1 which is approximately as given in
the constraint. The slight mismatch in the values of the usage
C(fj) and capacities wj could be because of numerical issues
in MATLAB and we are currently looking into it. Similarly
Fig. 4(h) demonstrates the scenario when the facilities are
constrained in their capacity to act as an entry facility of a
node in the proportion 4 : 2 : 2.5 : 0.5 : 1.0. The final
solution is such that a proportion 3.9 : 1.9 : 2.5 : 0.5 : 1.0 is
achieved for the facilities as the entry point for the nodes in the
network. Note the color changes for the nodes in comparison
to Fig. 4(c), (f) and (g). Fig. 4(i) illustrates the scenario
when the capacities of the transportation links are known
apriori. We assume that all the transportation links except
(f1, f3), (f2, f3), (f3, f4) and (f5, f4) have zero capacities and
we constrain that ηf1f4 : ηf2f4 : ηf3f4 : ηf5f4 = 3 : 7 : 10 : 10.
Upon simulation the facilities are allocated and transportation
paths are fixed in such a way that the Cf1f4 : Cf2f4 : Cf3f4 :
Cf5f4 = 3.3 : 6.3 : 9 : 9, i.e. the solution given by the
algorithm complies with the constraint on the communication
link capacities. The total cost of communication is 15.8 units.

Comparison with previous works: Next we compare our
proposed method with [28] and [29]. We begin with comparing
the computation time of the algorithm presented in this paper
with the one proposed in [28]. The computation time for the
problem setting shown in Fig. 4(j) is 24.86 seconds, while the
algorithm presented in this paper takes 1.85 seconds which
is just 8% of the former. Note that the [28] uses MATLAB
to run the algorithm on an Intel Core 2 Duo T5470 1.6 GHz
processor with 2 GB RAM, while we used MATLAB to code
and run our algorithm on i3 2.3 GHz processor with 2 GB
RAM. We note that the improvement in the computation time
comes from the scalability of the algorithm proposed in this
paper, since the configuration of the two machines used are
almost similar. Fig. 4(k) demonstrates the solution to the s-
FLPO problem as given by the algorithm in [29]. Here the
total cost of transportation comes out to be 14.93, which is
18% (or 2.35 units) more than the solution Fig. 4(c) given by
the algorithm presented in this paper.
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Fig. 4: The nodes, facilities and the destination center are represented by triangles, circles and diamond, respectively. (a)
At β ≈ 0 all facilities are coincident. (b) Phase Transition Phenomenon. (c) Facility locations and paths at β → ∞. The
first facility to each node is colored identically to that node. The commodity hops to the subsequent facilities from the first
facility as denoted by the arrows. (d) Two-step methodology for s-RARO. (e) Illustrates s-FLPO where Lγ0 = 3 ∀γ0 ∈ Γ0. (f)
Partially connected network - pairs (f1, f2), (f4, f1), (f2, f3), (f4, f5) and (f5, f3) do not exist. (g) Facility capacity constraint
w1 : w2 : w3 : w4 : w5 = 4 : 2 : 2 : 1 : 1. (h) Facilities constrained as entry facilities in proportion 4:2:2.5:0.1:1.0 (i)
Transportation link capacity constraints ηf1f4 : ηf2f4 : ηf3,f4 : ηf5,f4 = 0.3 : 0.7 : 1 : 1; all other communication links have
zero capacities. (j) For comparing computation times with [28]. Our algorithm - 1.85s, algorithm in [28] - 24.86s. (k) Solution
using framework from [29]. (l)-(m) Large scale problem with N = 17028, M = 27 and M = 50 in (l) and (m), respectively.
Solved using the algorithm in [29]. (n)-(o) Large scale problem with N = 17028, M = 27 and M = 50 in (n) and (o),
respectively. Solved using the algorithm in the current work (p) Comparing the objective function value (V1/V2) at various
number of facilities M as given by algorithm in [29] (V1) and our current work (V2) for the previous large scale setting of
nodes and destination. (q) Flowchart of the proposed algorithm in the d-FLPO problem.

Large Scale Problems: Fig. 4(l)-(o) demonstrate a large
scale s-FLPO problem setting with N = 17028 nodes as
indicated by the blue triangles. In the Fig. 4(l) and (n) we
allocate M = 27 facilities using the algorithm in [29] and
our current work, respectively. Note the qualitative difference
between the two solutions where the allocated facilities and
the transportation paths resulting from the latter are more
distributed in the domain as compared to [29]. The objective
function value for the solution in Fig. 4(l) is 1323.07 units
and for the Fig. 4(n) is 985.87 units; which is a improvement
of 25% over the former. Similarly, in the Fig. 4(m) and (o)
we allocated M = 50 facilities using the approach in [29]
and our current algorithm, respectively. The objective value
for the solution in Fig. 4(m) is 864.35 and for the solution
in Fig. 4(n) is 582.70; approximately 33% lesser objective
function value is obtained using our current framework. The
above quantifies the fact that the framework developed in [29]
results into suboptimal solutions as compared to our current
framework when applied to a general s-FLPO problem. Also
note that the framework presented in [28] is computationally
intractable for both the above cases of M = 27 and M = 50
facilities as it requires 2.9 × 1028 and 8.2 × 1064 many

decision variables, respectively; the corresponding memory
requirements are unthinkable. The Fig. 4(p) compares the cost
function value of the solutions obtained using [29] (V1) and our
current work (V2) for various number of facilities M allocated
in the large scale setting of nodes and destination illustrated
in Fig. 4(l)-(o). Note that the ratio η = V1/V2(> 1) increases
with number of allocated facilities and reaches close to 1.5 (i.e.
50% increase in the cost function values in [29]) for values of
M ' 40 - clearly indicating sub-optimality of the framework
[29] when applied to general s-FLPO problem setting.

d-FLPO in partially connected network: We consider
the scenario of partially connected spatial network where
the transportation links (f1, f2), (f2, f3), (f4, f1), (f1, f3),
(f4, f5) and (f5, f3) are absent. The main steps of the algo-
rithm are summarized in the Fig. 4(q). The sequence of images
in Fig. 5(a1)-(a4) demonstrate the dynamics of the facilities
and the transportation paths for randomly chosen dynamics of
the nodes and the destination center. The node and destination
center dynamics are simulated for a total duration of 20
seconds and the dynamics of the facilities and transportation
paths are determined using (31) after every time interval of
∆t = 0.03 seconds. Observe the change in the entry facility
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Fig. 5: (a1)-(a4) Illustrates the solution to the d-FLPO problem. Observe the change in spatial coordinates of the nodes,
destination center and the facilities. Also, observe the change in the color of the triangles from (a2) to (a3) and (a3) to (a4),
indicating the change in their transportation paths. (b) Non-viable dynamics of the facility locations. Observe the considerable
change in spatial location of f2 and f4 over a small interval of 0.03 seconds. (c) Comparing distortion from the two approaches.

of the nodes (marked by the change in their color) and their
corresponding transportation path in Fig. 5(a1)-(a4).

The frame-by-frame approach takes approximately 700
times more computational time than our approach for the ex-
ample considered above. Fig. 5(c) compares the distortion D0

obtained from our control-based approach and the frame-by-
frame solution. Apart from that, the simulations using frame-
by-frame approach show sudden jumps in positions which
may be impractical for scenarios with bounded velocities -
for instance in Fig. 5(b), note the sudden jump in positions of
facilities f2 and f4 in the span of two time instants that are
only 0.03 seconds apart.

VIII. ANALYSIS AND DISCUSSION

A. Flexibility of the framework: The proposed framework
is flexible to incorporate various additional constraints on
the s-FLPO and d-FLPO problems in terms of the network
topology, facilities, or the transportation paths as illustrated in
Section V. Our framework also generalizes to different choices
of distance functions dk(γk, γk+1) as against the squared
euclidean function considered in this paper.
B. Robustness Analysis: The solutions obtained to s-FLPO
and d-FLPO problems are sensitive to various attributes of the
nodes and the destination center (such as spatial locations,
dynamics and distance cost functions). This necessitates a
study to classify such attributes, that affect the final solution,
into various categories of importance. Our framework easily
facilitates such a study through the free energy function F
which is a smooth approximation of the cost function D.
For instance, the derivatives ∂F

∂xi
, ∂F
∂yj

and ∂F
∂d measure the

sensitivity of the final solution to the spatial location of the
node ni, facility fj and destination δ respectively.
C. Uncertainty in Parameters: In certain applications, in-
stead of the exact information about various attributes of
the nodes and the destination centre, a partial knowledge in
terms of distributions of these attributes may be known. For
instance, instead of the exact spatial location xi of the node
ni, distribution p(xi|ni) for the spatial location is known.
Our proposed framework easily incorporates such uncertainties
in parameter values. For example the above uncertainty in
the spatial locations of the nodes will result into replacing
d(ni, fj) with d′(ni, fj) =

∑
xi
p(xi|ni)d(ni, fj) and the

remainder of the problem solution follows as in Section III.
D. Application to Parameterized Finite Horizon Markov
Decision Processes (MDPs): The stage-wise framework pro-

posed in Figure 2 facilitates a viewpoint where in our MEP-
based solution approach for the FLPO problem is easily
extendable to the class of sequential decision making problems
that are modelled as finite horizon MDPs with parameter-
ized state space. In particular, consider the MDP given by
M = 〈S,A, c,P, H〉 where S is the state space, ζ(s) for
s ∈ S represents the unknown parameter (e.g. facility locations
in FLPO), A, c : S × A → R, P : S × S ×A →
{0, 1}, and H respectively denote the set of actions, the
cost function, the state transition probability, and maximum
number of stages. The underlying FLPO-type objective is to
min{ζ(s)},{µt(s)} J :=

∑
s∈S ρ(s)J(s) where

J(s) =
∑
X
p̄µ(X|x0 = s)

[ H∑
t=0

c(xt, µt(xt))
]
, (32)

ρ(s) denotes the weight of each state s ∈ S, µt(·) is the
policy under which the state xt = s ∈ S is followed
by xt+1 = µt(s) ∈ S, X := (x0, x1, . . . , xH) denotes a
sequences of states and p̄µ(·|s) is the distribution over the
space of all possible sequences X . Note the resemblance
of the objective function here with the cost function D in
(5) of the FLPO problem where the unknown parameters
ζ(s) are the facility locations {yj} and the policy µt(·) is
analogous to the association weights {pk(·|·)}. Hence, the
solution methodology detailed out in the Section III also solves
the optimization problem posed by the parameterized finite
horizon MDPs.

APPENDIX A

Definitions of matrices in the expression of y in (13)
1. A =

∑M
i=1Ai, where Ai ∈ RM×M is a diagonal matrix

such that (Ai)jj =
∑

γ0,γ1,...,γi−1

ργ0p0(γ1|γ0) . . . pi−1(fj |γi−1).

2. B =
∑M−1
i=1 (Bi +BTi ) where Bi ∈ RM×M is such that

(Bi)mn =
∑

γ0,γ1,...,γi−1

ργ0p0(γ1|γ0) . . . pi−1(fm|γi−1)pi(fn|fm).

3. X̄ ∈ RM×n, where X̄mn =
∑
γ0
ργ0p

0(fm|γ0)(ξ(γ0))n,
and (ξ(γ0))n is the n-th component of the spatial coor-
dinate of γ0.

4. C = B̄ +
∑M−1
i=2 B̃i +

∑M−1
j=2 B̌j + D̄ ∈ RM×n, where

(B̄)mn =
∑
γ0
ργ0p0(fm|γ0)p1(δ|fm)zn,

(B̃i)mn =
∑

γ0,γ1,...,γi−1

ργ0p0 . . . pi−2pi−1(fm|γi−1)pi(δ|fm)zn,
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(B̌i)mn =
∑

γ0,γ1,...,γi−1

ργ0p0 . . . pi−2pi−1(δ|γi−1)pi(fm|δ)zn,

(D̄)mn =
∑

γ0,...,γM−1

ργ0p0 . . . pM−1(fm|γM−1)zn, and zn de-

notes the n−th coordinate of the destination δ.
The matrix C := 2Â − B̂ is such that for every i−th row
in C the sum of absolute value of the off-diagonal entries
(
∑
j 6=i |[C]ij |) is less than the absolute value of the diagonal

element (|[C]ii|) in that row, i.e.
∑
j 6=i |[C]ij | < |[C]ii|. Thus,

by Gerhgorin’s Circle Theorem [38] all the eigenvalues of C
are positive and hence C is a positive definite matrix.

APPENDIX B

Proof of Theorem 1: As indicated in the algorithm, at each
value of the annealing parameter βt, where t denotes the
tth iteration, it is required to solve the following implicit
equation iteratively y = (2Â(y)−B̂(y))−1( ˆ̄X(y)+Ĉ(y)). The
corresponding iteration scheme (where n denotes the iterate
number) solves for yt at each value of βt

yt(n+ 1) = (2Ât(n)− B̂t(n))−1( ˆ̄Xt(n) + Ĉt(n))︸ ︷︷ ︸
=:Gt(yt(n))

where Ât(n), B̂t(n), ˆ̄Xt(n) and Ĉt(n) are dependent
on yt(n). The free-energy at the nth iteration
for the annealing parameter βt is given by
Ft(n) = − 1

βt

∑
γ0∈S ργ0 log

∑
γ∈G e

−βt
∑M
t=0 dt(γt(n),γt+1(n))

whose gradient with respect to y is ∇Ft(n) =
2(2Ât(n)− B̂t(n))(yt(n)− yt(n+ 1))

⇒ yt(n+ 1) = yt(n)− 1

2
(2Ât(n)− B̂t(n))−1∇Ft(n),

which is of the form yt(n + 1) = yt(n) + αkχt(n),
where χt(n) = −(2(At(n) − Bt(n))−1∇Ft(n). The matrix
Ct(n) = (2At(n) − Bt(n)) ∈ RM×M for every iteration n
is such that, for every i−th row in Ct the sum of absolute
value of off-diagonal entries (

∑
j 6=i |(Ct)ij |) is less than the

absolute value of the diagonal element (|(Ct)ii|) in that row,
i.e.

∑
j 6=i |(Ct)ij | < |(Ct)ii|. Thus, by Gerhgorin’s Circle

Theorem [38] all the eigen values of Ct(n) are positive. Hence(
Ct(n)

)−1
is positive definite and the descent direction χt(n)

is such that χt(n)T∇Ft(n) ≤ 0, where the equality holds true
only for the case when ∇Ft(n) = 0. Therefore χt(n) is the
descent direction and the current iteration scheme is a Descent
Method which guarantees convergence to a local minimum.

APPENDIX C

Definitions of Λγ , Kγ: Λγ ,Kγ ∈ RM+1, [Λγ ]n = ψn−ψn−1,
[Kγ ]n = ξ(γn) − ξ(γn−1), I ∈ R(M+1)×(M+1) is an identity
matrix, ξ(γk) is the spatial coordinate of γk, 0 ≤ k ≤M + 1.
Proof of Theorem 2: The solution y to (13) no longer implies
a (local) minimum to the cost function as soon as the second
order condition in (15) fails. There exists a direction ψ along
which the cost can decrease, thereby implying that y is not
the minimum. In fact, perturbation of y at such critical β
and re-solving (13) results in a new solution y. (as done in
step 4 of the annealing algorithm), which has more number
of distinct locations {yj}. To obtain this critical value of β,

we compute ∂2F
∂ε2 as in (15). We claim that the expression of

hessian ∂2F
∂ε2 in (15) is non-negative for all finite perturbation

ψ if and only if the matrix [I − 2βΥγ ] is positive definite.
The ’If’ part is straightforward since the second term in the
expression is non-negative. For the ’only If’ part we show that
when [I − 2βΥγ ] is not positive definite, there exists a finite
perturbation ψ such that the second term becomes zero thereby
making the entire expression in (15) negative. Let us assume
that there exists a transportation path γ ∈ G with positive
probability such that the matrix [I − 2βΥγ ] is not positive
definite. In fact, we assume there are several coincident
facilities which result into several coincident transportation
paths γ ∈ G such that [I−2βΥγ ] is not positive definite. Under
such circumstances we see that for the finite perturbation
Λγ = 0 ∀ γ 6= γ̂ and

∑
γ∈G:γ=γ̂ Λγ = 0, the second term in

(15) is zero. Thus whenever the first term in (15) is not positive
definite we can construct the above perturbation such that the
second term vanishes. Hence the positivity of the expression
in (15) for all finite perturbations ψ depends solely on the
positive definiteness of [I−2βΥγ ]. The phase transition occurs
when the matrix [I−2βΥγ ] loses its positive definiteness; i.e.
det
[
I− 2βΥγ

]
= 0⇒ βcr(γ) = 1

2λmax(γ) where λmax is the
largest eigenvalue of Υγ . We consider the βcr = maxγ βcr(γ)
as we anneal β from a large value to zero. The above derivation
is analogous to the DA algorithm in [22].

APPENDIX D

A. Theorem 3: Part (a), we note that e−β
∑M
t=0 dt(γt,γt+1) <

1 since dt(·, ·) ≥ 0.Therefore log
∑
G e
−β

∑M
t=0 dt(γt,γt+1) <

log |G|. The result follows since
∑
γ0
ργ0 = 1. Part (b) of the

theorem follow directly from the expression of F in (12). Part
(c): At the instant when y(t) = yc(t) we have that ȳ(t) = 0.
Hence the derivative of free-energy Ḟ (t) is given by Ḟ =
xT P̂γ0Φ + [zT − yTc Ĉ]ψ, which is independent of ū. Hence
∂Ḟ
∂u = 0.
B. Theorem 4: Substituting ū(t) (31) in Ḟ we obtain Ḟ =
−K0ȳ

T (2Â− B̂)ȳ− (α2 +(ȳ(2Â− B̂)ȳ)2)1/2 where K0 > 0
and (2Â − B̂) positive definite (as shown in Appendix A).
Hence Ḟ ≤ 0. We know from Theorem 3 that the free-energy
function F is lower bounded and from above we have that for
the control ū(t) in (31) Ḟ ≤ 0. We conclude from here that
F (t) converges (say to F∞, where |F∞| <∞) and |Ḟ (t)| → 0
as t→∞. Now since Ḟ = −K0ȳ

T (2Â−B̂)ȳ−(α2+(ȳ(2Â−
B̂)ȳ)2)1/2, we have that K0ȳ

T (2Â − B̂)ȳ ≤ |Ḟ |. Thus we
conclude that ȳ(t)→ 0 as t→∞.
C. Theorem 5: Note- The proof here is similar to the proof for
Proposition 3.43 in [35]. Since (2Â− B̂) and Φ are Lipschitz,
it is enough to show that ū is Lipschitz at ζ̄ = 0. Since û ,
û− (2Â− B̂)−1(P̂ 0(γ1, γ0)TΦ + Ĉψ) is Lipschitz at ζ̄ = 0,
there exists a neighborhood Bδ , {ζ̄ : ‖ζ̄‖ ≤ δ} and k̄ > 0
such that ‖û(ζ̄)‖ ≤ k̄‖ζ̄‖ ∀ζ̄ ∈ Bδ . Also Ḟ = α + ȳT (2Â −
B̂)û(t) ≤ 0 where α = [xT P̂γ0 − yTc P̂0(γ1|γ0)T ]Φ + [zT −
yTc Ĉ]ψ. If α > 0, then |α| ≤ |ȳT (2Â − B̂)û| ≤ k̄1‖ȳ‖‖ζ̄‖
∀ζ̄ ∈ Bδ where k̄1 = kλmax(2Â−B̂). Thus the control design
ū (31) can be bounded above as ‖ū‖ ≤ (2k̄ + K0 + 1)‖ζ̄‖.
For the case when α < 0, we have that ‖ū‖ ≤ (1+K0)‖ȳ‖ ≤
(1 +K0)‖ζ̄‖.
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